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OVERVIEW OF CONCUSSION AND VISUAL FUNCTION

Conservatively, it is estimated that at least 40% of the primate brain is primarily visual
machinery.1!5 Recognizing that accommodation, vergences, saccades, orbital sensation,
eyelid function, visual fields/acuity, color vision, and pupillary function are subserved by
7 of the 12 cranial nerves, the importance of a detailed visuo-oculomotor examination in
mTBI cases becomes apparent. It is therefore prudent to explore visual function carefully
in mild traumatic brain injury (mTBI) beyond the ostensible reassurance offered when a
patient sees with 20/20 acuity bilaterally. It is entirely appropriate to rule out pathology
that might cause gross visual field/acuity and/or visuomotor defects, since these deficits
are common in moderate to severe brain injury in which patients suffer loss of conscious-
ness.6 However, after mTBI, deficits in visual processing as reflected in abnormal eye
teaming rather than those from direct injury to the afferent visual pathways or oculomotor
nerves are far more common.7!15 A difficulty that faces examiners in the emergency set-
ting is the often subtle presentation of eye teaming issues, despite the fact they can cause
significant symptomatology.11,16 In addition, patients might not demonstrate certain defi-
cits immediately after an injury due the later onset of inflammatory changes and cerebral
perfusion deficits associated with concussion.17!19 Patients themselves might not even
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notice certain visual deficits until they try to return to their normal routine with visual-
intensive tasks such as reading, computer use and driving.

Visual symptoms commonly reported after mTBI include fluctuations in visual acuity at
near, headaches with visual-intensive tasks and photophobia.7,20,21 The prevalence of
visual issues in mTBI patients between ages 11 and 17 has been estimated at 69% with
overlapping issues including accommodative dysfunction (51%), convergence insuffi-
ciency (CI, 49%), and saccadic dysfunction (29%) being reported. Furthermore, 14% of
patients were found to have significant dysfunction in all three domains.22 Dual sensory
damage such as vestibulo-ocular dysfunction in children after sport-related injuries was
reported to be 63%.23 Given that persistent (6 months or more after injury) visual symp-
toms are not uncommon in mTBI patients,24!27 it is logical to suggest that we need to
investigate the oculomotor system of patients with mTBI in more detail than what might
be normally offered during a routine eye exam. This is even more vital if we consider
that mTBI patients have approximately a 33 higher suicide rate compared to the general
population and that more than half saw their primary care physician less than a week
before committing suicide.28 This research speaks to the fact that these patients are reach-
ing out to seek care, but are often underdiagnosed in terms of their underlying functional
difficulties.11

It is appropriate, then, to refrain from assuming a normal visual status in the absence of
appropriate visual testing. Areas vital to assess in mTBI patients include both subjective
complaints and objective tests of visual function. Patients will often have difficulty verbal-
izing their complaints, not only because of cognitive difficulties such as impaired word-
finding, memory, and complex attention,12,29!31 but also because there are only vague
terms available to the layperson for the subtle visual problems, such as eyestrain. The
examiner must ask specific questions and may need to ask them in more than one way; a
validated questionnaire is preferable.32!34 Concerning the physical exam, saccadic testing,
vergence amplitude/facility testing, accommodative amplitude/facility testing, and fixa-
tion disparity (FD) assessment [i.e., associated heterophoria (AH) testing] are all cru-
cial.35,36 If such tests are not performed, the assumption of normality might not only be
incorrect, but can result in limited gains in other rehabilitative areas, such as vestibular
rehabilitation therapy or physiotherapy. This is because patients with visual concerns after
mTBI are less sure of their own positioning in space37 and require correct visual cues to
promote better balance.38

Once a patient has been shown to exhibit visual processing difficulties, therapy should
be initiated in concert with a patient’s other providers. As was so elegantly stated, “it takes
a village and it begins with each of us.”39 There is a growing body of evidence demon-
strating the efficacy of visual exercises for patients with visual concerns that might be seen
after mTBI.14,40!43 The Convergence Insufficiency Treatment Trial,44,45 for example, proved
that in-office therapy with home exercises can effectively resolve CI, albeit in children
with no history of mTBI. Sports vision training has been shown to improve stereopsis in
athletes,46 visual search performance in students,47 and even reduce concussion incidence
when used on a team-wide basis;48,49 these programs are not only likely translatable to
mTBI patients, but are also germane, since concussion itself is a risk factor for a second
concussion.50,51 Other studies aimed specifically at mTBI patients have documented
improvements in reading, accommodative responsivity,52 and vergence facility.53!57
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It should be noted that visuomotor training exercises are very similar to the visual tasks
that produce symptoms in patients. Therefore, patients must be apprised with the caveat
that visuomotor rehabilitation, like any other form of physical therapy or exercise pro-
gram, is a process that starts gently, requires adequate engagement of the patient in terms
of office visits and homework, and takes time.58

SPECIFIC OCULOMOTOR AND VISUAL PROCESSING DIFFICULTIES

Saccadic Dysfunction

Accurate saccadic eye movements underpin the ability to see in a moving environment
and are crucial components of reading.36 It is well-documented that difficulties with driv-
ing and reading, two tasks dependent upon saccades, are common complaints for patients
suffering mTBI; there is often corresponding saccadic dysfunction demonstrable in these
patients including hypometric saccades and reduced ability to inhibit saccades.21,59!67

Excessive eye movements during reading have been linked to poorer reading skills and
poor overall oculomotor function.36 Notably, patients with reduced oculomotor function
are far more likely to reveal a history of concussion.35 A basic saccadic eye movement is a
rapid refixation from one point to another.68 In order to initiate a saccade, the visual sys-
tem must not only release fixation from the point of regard, but also preplan where the
next fixation will take hold, a process which ultimately requires peripheral awareness.
Patients with mTBI demonstrate difficulties with both releasing and capturing objects of
regard.67,69!71 The preplanning phase is dependent upon the interaction between brain
regions serving the bimodal vision processes, that is, focal (detailed information related to
the macular cone-parvocellular ganglion cell pathways) and ambient [spatial awareness of
the periphery (motion and luminance) related to the rod-magnocellular ganglion cell path-
ways].69,72,73 To put this in terms that are likely too simplistic, focal vision is where one is
looking, whereas ambient vision is the visual area around where one is looking. These
vision processes appear to be subserved through ventral and dorsal anatomic streams in
the brain.74 In addition, both components ultimately integrate to achieve accurate saccadic
performance.68

The neurophysiology underpinning oculomotor dysfunction after mTBI has only
recently been explored. Studies employing magnetoencephalography (MEG)75!77 and
functional magnetic resonance imaging (fMRI)78,79 have provided data suggesting aberrant
functional connectivities in brains of patients with mTBI, both at rest and during visual
tasks. In line with this approach, it has been proposed that mTBI leads to a decoupling of
the ambient and focal visual pathways,80 with subsequent dysfunction of the oculomotor
system. Notably, subsequent studies employing diffusion tensor imaging (DTI) and fMRI
suggest that human brain regions subserving the generation of saccades (right frontal eye
fields, supplementary eye fields, and dorsal striatum) and their inhibition (dorsal striatum,
right supplementary eye field, and right inferior frontal cortex) are not identical and even
partly dissociable.81 DTI studies have certainly demonstrated heretofore unknown struc-
tural damage after mTBI.82,83 Therefore, it seems reasonable to suggest that this modality
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might serve to clarify the neurologic basis of saccadic dysfunction (and other visuomotor
defects) seen in patients.

Screening for saccades can be performed in the office or the field by having a patient
look quickly from central gaze to a peripheral target and also by passively rotating the
patient’s head rapidly to stimulate the vestibulo-ocular reflex (VOR); an excellent visual
demonstration of this is provided in a video84 attached to the review by Ventura et al.67

Notably, more sophisticated tests of saccadic function such as the King-Devick and
Developmental Eye Movement (DEM/DEM-A) tests are becoming standard equipment for
providers.70,85!87 Although clinic-based devices to measure ocular motility during sac-
cades have been available for some time, it should be noted that newer portable devices
that passively measure saccades, such as the Saccadometert, have been introduced88;
preliminary studies suggest this device might be useful to monitor patients in the field.89

The available tests for evaluating saccades have age-matched normative data allowing a
percentile score to be obtained post-mTBI. Ideally these tests would be offered to those at
risk for concussion prior to play/deployment so that premorbid baseline data would be
available for each individual where possible.87 Data culled predeployment would not only
be helpful in improving diagnosis of individuals but also in monitoring the progress of
these patients through their rehabilitation/deployment.

The pattern of the saccadic dysfunction is important, with horizontal saccadic dysfunc-
tion being more suggestive of oculomotor impairment (DEM Type II result),90 whereas
reduction of both horizontal and vertical saccades is more suggestive of a generalized
rapid automated naming (RAN) deficit.90 A patient with a RAN deficit may have other
concurrent nonoculomotor concerns such as reduced visual memory,91 which has been
linked to lower reading fluency rates.92 While reduced saccadic performance has been
studied in children with reading difficulties primarily employing DEM testing,93 a similar
evaluation of saccadic function (King-Devick) has been used in the context of concussion.
In this case, it was demonstrated that horizontal saccades were impaired and this corre-
lated with deficits in immediate memory recall.65

Our understanding of impaired visual processing leading to saccadic dysfunction in
patients with mTBI may be supplemented by studies on patients with attention deficit/
hyperactivity disorder (ADHD), since abnormal visual processing seems to underlie this
disorder.94!97 Notably, there is a growing body of evidence relating mTBI and ADHD; it
is not uncommon for ADHD to develop in patients with mTBI,98,99 with one study citing a
hazard ratio of 1.32.100 Additionally, a premorbid diagnosis of ADHD leads to poorer
recovery in patients with mTBI.101 Furthermore, a premorbid diagnosis of ADHD may be
a risk factor to incur concussion.102,103 Finally, patients with ADHD demonstrate saccadic
dysfunction in ways qualitatively similar to patients with mTBI.104!106

Pursuit Dysfunction

A pursuit is a smooth, constant velocity eye movement from one point to another (as
opposed to a saccade which is a ballistic jump). Smooth pursuits can be measured in the
laboratory or clinic setting using electro-oculography,107 although novel technologies that
are portable, fieldable and relatively inexpensive have also been explored.108,109 The upper
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limit of smooth pursuit velocity for normal humans is over 100"/sec,110 although this rate
declines with aging.111 Pursuit disruption within the context of concussion has been exam-
ined in the past decade,112!115 where reports suggest that patients with TBI demonstrated
decreased target prediction, reduced tracking speed, and less accurate tracking. Smooth
pursuits, like other oculomotor functions, are subserved by networks spanning much of
the brain, including cortical (V5, frontal, and supplementary eye fields) and subcortical
(basal ganglia, thalamus, and cerebellum) structures.116 A subsequent fMRI study of ath-
letes with acute/subacute concussion showed abnormal activity during tests of smooth
pursuits, but did not specifically highlight any one area of the brain,117 consistent with the
idea that concussion causes a more global disruption of networks. MEG has been
employed to study patients with concussion-related pursuit dysfunction.76 These patients
appeared to have normal function during visual pursuits until the object of regard was
transiently blocked, after which the patients then showed deficits in resynchronizing their
gaze when the object reappeared. Specifically, there was abnormal suppression of beta
activity in the right parietal cortex and abnormally elevated activity in the left caudate and
fronto-temporal cortex. This study highlights the important role that anticipatory control
plays in oculomotor function. At present, there are no published studies employing DTI
to explore dysfunction of pursuits in patients with mTBI. Notably, DTI has been employed
to evaluate parkinsonian patients with disturbed smooth pursuits, and abnormalities in
the middle cerebral peduncle (but not in cortical or subcortical white matter) were
identified.118

Smooth eye movements not only permit tracking a target, but they also permit main-
taining a fixed gaze upon a target when that target is stationary while the head is in
motion, that is, the VOR, an integration of the oculomotor and vestibular systems. Patients
with abnormal VOR screening demonstrate delayed recovery after concussion.119

Furthermore, primates with lesions to the peripheral vestibular organs demonstrate poorer
recovery if they also underwent lesioning of the primary visual cortex (V1).120,121

Conversely, VOR recovery in monkeys post-labyrinthectomy is significantly better when
the animal is in a more brightly lit environment.121 DTI has demonstrated that the
vestibular circuitry runs the length of the brain from brainstem to cortex, with multiple
ladder-like crossings in the brainstem and corpus callosum.122 While patients with mTBI
and vestibular symptoms after blunt injury demonstrated abnormal findings in the fusi-
form gyri and cerebellum on DTI,123 patients with blast injury and vestibular concerns
showed more diffuse axonal injury,124 highlighting the concern that the mechanism of
injury causing mTBI must be a consideration.125,126 That being said, it must be noted that
visuomotor concerns and outcomes appear to be quite similar for patients with mTBI
regardless of whether there was a history of blast exposure.114,127 Concerning other novel
imaging modalities, there is a dearth of published studies employing fMRI or MEG to
evaluate patients with vestibulo-ocular dysfunction after mTBI.

It is interesting to note that there is significant overlap in the networks subserving
saccades and smooth pursuits (e.g., dorsolateral prefrontal cortex, frontal eye fields, and pos-
terior parietal cortex).128 Despite this, it appears that visual smooth pursuits are not abnormal
in patients with ADHD129!131 in the way they are abnormal in patients with mTBI. If this
finding proves to be consistent, one could hypothesize employing it to help differentiate
patients with mTBI, ADHD and/or other causes of abnormal visual processing.
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Vergence Dysfunction

Vergence function refers to how well the eyes team; this can be described in terms of
convergence and divergence amplitude, vergence facility (converging and diverging in
sequence) and vertical/torsional vergence ranges. Although, convergence and stereopsis
have been shown to be present starting approximately 3!6 months of age,132 peak normal
vergence develops by age 4!5 years133,134 and, in the absence of injury or disease, should
remain stable until the 5th decade of life.134,135 Isolated measurements of vergence can be
accomplished employing graded prisms through which a subject looks from fixed dis-
tances; measuring vergence while changing the target distance simultaneously challenges
the accommodation system and, therefore, should be avoided if only vergence measure-
ments are sought. Vergence deficits (of amplitude and/or facility) have been shown to be
quite common in mTBI,20,35,136 with some forms of vergence deficit being reported in
approximately 45% of adolescent concussions.22 CI is the inability to move both eyes
inwards without undue strain.137 As with saccadic dysfunction, there is evidence connect-
ing CI and ADHD. First, there is significant symptomatic overlap between the CI and
ADHD (i.e., five out of the nine DSM-IV criteria are shared, namely symptoms 1, 2, 4, 6,
and 8).137 In addition, it has been reported that the incidence of CI in the general popula-
tion is 1.8%!3.3% compared to 15.9% in the ADHD population,137 although a later study
did not support this finding.138 Finally, children with CI who did not carry an official
diagnosis of ADHD scored significantly higher on parental ratings of behavior consistent
with ADHD.139 Academic difficulties are common in children with visual complaints after
concussion.13 Since interventions for CI have been shown to result in academic gains post-
mTBI,140 it could be important to monitor particularly the trajectory of improvement in
those mTBI patients who also suffer ADHD. Furthermore, since reduced vergence facility
has also been linked to reading inefficiency36 and training to improve vergence facility has
been shown to improve saccadic function,141 it appears reasonable to inquire about both
reading and attentional problems in patients with mTBI.

The midbrain seems to be a key relay station of the pathways subserving vergences via
networks to the cerebellum and pons,142 area V1 (primary visual cortex),143 middle super-
ior temporal cortex,144 and frontal eye fields.142 It is likely that the diffuse axonal injury
caused by concussion will affect multiple nodes along this extensive network145 making
the exact location of damage in patients with CI more difficult to pinpoint. One study
employing DTI on concussed patients demonstrated abnormal fractional anisotropy values
in the right anterior thalamic radiation and the right lateral geniculate nucleus.123

Serendipitously, the diffuse nature of the vergence network (and therefore its susceptibil-
ity to injury) suggests that vergence dysfunction may prove to be a relatively sensitive
marker for mTBI.

Accommodative Dysfunction

Accommodative function can be separated into amplitude and facility metrics.
Accommodative amplitude can be defined as the monocular ability to sustain a clear
image on the retina during fixation at a near target (closer than 20 m). Accommodative
facility is the monocular ability to smoothly change focus quickly without undue strain or
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delay36 as fixation targets approach or recede. Accommodative amplitude is measured in
diopters [D] [i.e., the inverse of the distance (in meters) from viewer to target] while
accommodative facility is measured in cycles per minute (cpm), usually with a 62D lens
monocularly.36 While the neural network subserving accommodation spans the length of
the human brain,146 the endpoint is mediated via the third cranial nerve through innervation
to the ciliary body of the eye, that is, a ring of muscle that controls the thickness of the crys-
talline lens. Accommodation naturally starts to decrease after age 40 years, a condition
called presbyopia. Presbyopia is likely due to the hardening of the crystalline lens.147!149

Patients with mTBI commonly demonstrate a degradation of accommodation amplitude
and facility; estimated prevalence rates range between 20% and 50% of patients.20,22,52,61

These deficits might not only include reduced ability to focus at near but also a spasm of
the near response.15,20,22,59,60,67,86,150!153 Subsequently, vision-based rehabilitative strategies
for accommodative dysfunction have been shown to be effective both in increasing
accommodative function and improving objective VEP data in a small population of
patients suffering concussion.52,154 Positive results of vision-based rehabilitation from
larger scale prospective randomized clinical trials studies on pediatric patients with
accommodation dysfunction but without a history of mTBI (designed in a manner similar
to the CITT study155) have also been reported.156 It may be that mTBI somehow exacer-
bates the clinical significance of latent hyperopia, although there appear to be no pub-
lished reports evaluating the prevalence of latent hyperopia in patients with
accommodative dysfunction after mTBI. One published report evaluating children (with-
out a history of mTBI) suggests that hyperopia as low as 11.50D in the presence of
accommodative dysfunction can impair reading fluency, as assessed by objective infra-red
eye-tracking devices.36 In addition, patients with significant hypermetropia (.1 4D) more
commonly demonstrate accommodation lag.157

Accommodative facility can and should be tested monocularly using a 62D flipper lens;
testing binocularly will stimulate both accommodation and vergence and should be avoided
if only accommodation facility is sought. Although the average normal monocular
accommodative facility is approximately 11 cpm,158,159 the range is wide, approximately
66 cpm.158 Accommodative amplitude is measured in diopters by first calculating
the inverse of the distance of the near point for the emmetropized eye; this can then be com-
pared to the age-adjusted normal amplitude of accommodation calculated with Hofstetter’s
formula (i.e., minimum monocular accommodative amplitude5 15D!0.253 age).160 As with
vergence and saccadic dysfunction, accommodative abnormalities seem to have a link to
ADHD; studies have shown that as little as 2D of excessive accommodative strain can
induce symptoms akin to ADHD on the Connor’s Rating Scale (CRS).151 Given that
accommodative dysfunction is relatively common in mTBI, it stands to reason that patients
with any attention issues arising post-mTBI should be evaluated for accommodative
dysfunction prior to diagnosing concomitant ADHD.

Fixation Disparity and Impaired Stereopsis

Recognizing that saccades, pursuits, vergences, and accommodation can be disrupted in
mTBI, it is not surprising that visual fusion suffers as well.161 In this context, deficits in
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visual fusion refer to FD slips, or AH.162 FD slips represent a small misalignment of the
visual axes of either eye under binocularly fused conditions such that there is a lack of bi-
foveal fixation, but maintenance of normal retinal correspondence. This can occur because
the disparity is still within Panum’s area of fusion, which is approximately 100 arc at fixa-
tion in normal subjects.163 This small heterophoria, as low as 0.5PD, is too subtle to be
measured by those tests use for dissociated heterophoria (DH), such as the cover-uncover
test or Maddox-rod test. Whereas AH is a deviation from orthophoria that occurs when
fusional contours are absent only from the central visual field, DH is a deviation that
occurs when neither central nor peripheral fusional contours are offered,164 such as during
cover-uncover- or Maddox-rod testing. AH has been shown to be a much better indicator
of symptomatology compared to DH165 as the alignment of the visual axis under binocular
conditions is more relevant to the habitual oculomotor status. In addition, AH is more use-
ful in determining who might be uncomfortable using 3D-viewing technology.166 It has
been reported that patients with mTBI often demonstrate vertical heterophorias and that
correction with prism aids in reducing symptomatology.167,168 Devices to measure AH,
that is, the minimum prismatic correction required to attain alignment recorded in arc
minutes or prism diopters, include the Mallett unit, Sheedy Disparometer, and Wesson
Fixation Disparity card.163,169 These tests offer suppression checks, that is, polarized filters
over either eye so that different targets can be viewed binocularly, allowing the examiner
to determine whether patients are avoiding diplopia through suppression of one visual
field, that is, becoming functionally monocular.

Another aspect of visual fusion is stereopsis (depth perception), which can be described
as local or global in nature. Stereopsis is measured by standardized tests (e.g., see
Refs.170,171) and reported in minutes/seconds of arc; normal values have been pub-
lished.172 Global stereoscopic targets (i.e., randot displays), which require a larger visual
area in order to be seen, can better reveal symptomatology compared to local stereoscopic
targets.173 Notably, stereopsis normally declines as the visual target moves from the fovea
to the retinal periphery.174 In addition, perception of depth appears to require both retinal
and extra-retinal inputs during motion of the scene or the observer. Finally, it is notewor-
thy that studies employing fMRI suggest that depth perception appears to be subserved
by the dorsal visual stream in normal subjects, in particular to visual cortical areas V3A,
V7, and MT1/V5.175

Patients with mTBI demonstrate reduced stereopsis at near176 and, to a lesser degree, at
distance.177 However, these impairments seem insufficient to explain their relatively com-
mon complaint of reduced depth perception. Furthermore, patients suffering concussion
report decreased tolerance to aniseikonia (different retinal image sizes due to differing
refractive errors between the two eyes)178 which may play some role in their reduced
ability fuse. Although the primary visual cortex (V1) of adult patients suffering from
blast-related mTBI demonstrate abnormalities with fMRI,179 there are no published reports
specifically exploring the changes in integrity or connectivity of the ventral and dorsal
visual pathways.

Anecdotally, patients with mTBI frequently report intolerance to viewing 3D movies
(personal experience, personal communications). Even in normal individuals, observing
3D movies is known to elicit symptoms of imbalance, headache, eyestrain, and motion
sickness.180!182 In addition, these symptoms tend to be more common and more severe in
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individuals with a history of susceptibility to motion sickness or migraine.182 Although
there are no studies of the responses of mTBI patients to watching 3D movies, it is likely
they would fall into the category of susceptible patients. However, it is unclear whether
their reduced stereopsis would play a role in that susceptibility; a large study of normal
patients who reported untoward effects of watching 3D movies indicated that there was
no correlation between degree of stereopsis and symptoms.181

Reduced stereoacuity also seems to a problem shared by patients with mTBI and those
with ADHD,183,184 further supporting the idea that mTBI is associated with abnormal
vision information processing. While further research is certainly needed, it seems reason-
able to hypothesize that reduced depth perception and binocular fusion may result from
impaired integration of central (ventral) and peripheral visual (dorsal) information.

Deficits in Visual Information Processing

Visual information processing (VIP) is multifaceted and includes, among other things
(vide infra) the ability to explore complex visual stimuli in which there are many equally
salient targets of fixation (e.g., crowds of people). VIP appears to depend upon intact
central-peripheral (i.e., ventral-dorsal visual stream) integration ability.185 In addition, the
activation of recruited neuronal areas requires a concomitant upregulation of cerebral per-
fusion pressure.186 While there are no published reports evaluating the integrity of the
dorsal-ventral visual networks after mTBI, it is known that patients with mTBI show mea-
surable deficits with complex visual processing.187!190 Notably, patients with ADHD also
demonstrate abnormal cortical processing of salient visual information when examined
with fMRI.191,192 One could suggest a utility to employing fMRI in the evaluation of
patients with mTBI as they scan targets of varying complexity, since they frequently voice
complaints of being visually overwhelmed in environments such as a shopping mall.193

At present, the substrate for deficits in VIP after mTBI is unknown. There is a growing
body of literature indicating that mTBI is associated with abnormal autonomic control of
cortical perfusion, even long after the original injury.194!197 However, it is unknown
whether the reduced cerebral perfusion limits VIP or is a consequence of reduced recruit-
ment by impaired visual networks. Concerning those visual processing networks, the
dorsal stream is supported by fewer retinal ganglion cells than the ventral one; of approxi-
mately 1.2 million retinal ganglion cells, 200,000 are M-cells (motion and luminance detec-
tion) with most of the remaining 1 million retinal ganglion cells being P-cells (object
identification).198 The ratio of P-cells to M-cells by eccentricity changes from 15:1 at the
fovea to 5:1 at 15 degrees eccentricity198 reflecting the shift of increased magnocellular-
type processing with increasing eccentricity.199 One could hypothesize that the smaller
size of the dorsal pathway is inherently less redundant and, therefore, more susceptible to
damage after mTBI. Notably, M-cells also have a higher contrast/gain ratio (aside from
increased sensitivity to motion) compared to P-cells.200 This could support a hypothesis
suggesting that defects in the M-cell mediated dorsal visual stream after mTBI contribute
to the common complaint of photophobia.201

Another aspect of VIP is the figure-ground segregation ability, or the ability to recog-
nize a salient visual target (i.e., figure) buried in a visually noisy background (i.e.,
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ground).202 An example would be a patient shopping in an aisle for a specific item. This
visual task is arguably the crux of many other visual functions. For example, physiological
diplopia (normal double vision from objects located outside the horopter) is a known cue
for vergence and depends upon a subject’s ability to discern “foreground” from “back-
ground” in order to ultimately control eye movements.202 Given that saccades have been
shown to be impaired after concussion and that figure-ground segregation skills are inti-
mately associated with saccades,203!206 it stands to reason that figure-ground segregation
would be reduced after brain injury. Indeed, stroke patients demonstrate loss of figure-
ground segregation and it has been suggested that loss of such skills were rooted in oculo-
motor dysfunction.207 There are scattered case reports of patients with closed head injury
demonstrating abnormal figure-ground perception,208 but this aspect of VIP has not been
systematically studied in patients with mTBI. It is worth mentioning that lesioning cortical
area MT in primates (which has major inputs from the dorsal magnocellular stream) causes
a persistent deficit in the ability to identify motion against a complex background.209 This
not only reinforces the importance of the M-system in figure-ground processing, but could
support the notion that damage to the dorsal visual stream after mTBI contribute to patients’
complaints of discomfiture with moving stimuli.140

Disturbance of the figure-ground segregation visual process has been observed in a
recently described disorder dubbed “visual midline shift syndrome” (VMSS), in that the
patient observes motion or tilting of a surface even in the absence of head or body motion
(i.e., independent of vestibular involvement).80,210 VMSS has been reported in patients with
stroke,211 TBI,210 and other neurologic conditions212 as a shift in the patient’s sense of bodily
midline, or egocenter, such that patients tend to bear weight nonorthogonally to the
ground. Notably, it has been reported that patients suffering stroke (CVA)213 and
mTBI214,215 demonstrate altered postural control, supporting the concept that sensorimotor
integration processes for stance and balance are impaired. Stroke patients also demonstrate
uneven weight-bearing during ambulation on pressure-sensitive treadmills and respond
positively to yoked prisms that revert the visual midline to their body center.212 VMSS is
currently not a widely accepted nosologic entity outside the neuro-optometric community,
although there is a case report in the sports medicine literature describing how prismatic
correction of VMSS improved an athlete’s posture and reduced his lower back pain.216

Confirmation of the validity and etiology of VMSS is extremely important because this
condition may be a significant cause of imbalance and falls after mTBI, independent of
mTBI-related pathology to the vestibulo-ocular system.217 As mentioned previously, the
VOR stabilizes the visual scene perceived by a moving patient. Simultaneously, kinesthetic
input from the vestibulospinal- and vestibulocollic reflexes steady the trunk and head,
respectively.217 If VMSS is a distinct vision processing disorder, one could hypothesize
that it might impede physical rehabilitation directed toward balance disorders or even
encourage maladaptive visual fixation techniques that can occur after brain injury.218

Clinically, the vestibular system can only be indirectly assessed via the visual system
(e.g., saccadic eye movements and nystagmus).219 Therefore, any oculomotor dysfunction
can result in ambiguity as to the cause of abnormal eye movements demonstrated during
VOR assessment. This supports the need for evaluating the oculomotor system prior to
rendering a definitive diagnosis of vestibular dysfunction for patients with complaints
often conflated by patients such as dizziness, vertigo, lightheadedness, imbalance, and
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disequilibrium; notably, true vertigo is usually caused by vestibular pathology.220

Returning to the concept that “it takes a village” to evaluate and treat patients with mTBI,
the oculomotor evaluation must be done in the context of a larger, more comprehensive
assessment, including explorations of balance, vestibular-cognitive, and neurocognitive
function. This suite of tests, called the vestibular-ocular-motor screening (VOMS)
approach, appears to be validly sensitive in detecting concussion.23,221!225 In addition, it
has been reported that results of the VOMS may help predict outcomes after mTBI,225

although conflicting data has been reported in this regard.114,225

THE GENERALIST’S APPROACH TO EVALUATING
VISUAL DYSFUNCTION IN PATIENTS WITH MILD

TRAUMATIC BRAIN INJURY

The subjective visual complaints expressed by patients with mTBI are legion. To guide
a patient through this process and facilitate the provider’s effort to document these com-
plaints, it seems appropriate to offer a questionnaire for oculomotor dysfunction. One
such instrument is the Convergence Insufficiency Symptom Survey (CISS).226 Although
this survey was designed to identify CI, it has also been reported to measure symptom-
atology in other oculomotor disorders such as accommodative dysfunction.227 Indeed, this
instrument may be more sensitive to global visual dysfunction rather than being specific
to CI.228,229 Given that patients with mTBI who complete vision rehabilitation show
marked improvement in CISS scores,40 it seems reasonable to offer the CISS to these
patients early in the diagnostic process so as to proactively guide referrals. The CISS ques-
tionnaire is brief, being comprised of 15 questions with each answer being weighted from 0
to 4 (never5 0, infrequently5 1, sometimes5 2, fairly often5 3, always5 4) and scores
ranging from 0 to 60; a score over 20 in adults should raise concerns. Notably, other vision-
based surveys have been reported and deserve further efforts toward validation.33,230

A particular difficulty encountered when recording visual dysfunction after mTBI is
that the list of ICD-10t231 codes lags behind the science. For example, there are no codes
for some of the proposed nosologic entities, such as VMSS or even confirmed ones such as
indirect traumatic optic neuropathy232 or central visual processing disorder. Notably,
while there are assigned codes for both central and acquired auditory processing disorders,
there are no codes for central vestibular processing disorder. Table 15.1 provides a list of
diagnostic codes for conditions known to occur after TBI.

CONCLUSION

Visual dysfunction after mTBI is pervasive and long-lasting, albeit often amenable to
treatment. It is the responsibility of the medical community to educate providers, offering
better means of detection, and avenues of therapy. It is time to recognize that the term
“mild TBI” is oxymoronic and a misnomer,233,234 considering the fact that the impact on
quality of life can be pervasive and chronic.
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TABLE 15.1 Diagnoses of Visual Dysfunction After TBI

Diagnosis ICD-10 Code

Strabismus (eso-, exo-, hyper-, hypo-, cyclo-tropias) H50.xx

Monofixation syndrome H50.42

Spasm of conjugate gaze H51.0

Convergence insufficiency H51.11

Convergence excess H51.12

Other specified disorders of binocular movement H51.8

Paresis of accommodation H52.52

Spasm of accommodation H52.53

Diplopia H53.2

Anomalous retinal correspondence H53.31

Fusion with defective stereopsis H53.32

Simultaneous visual perception without fusion H53.33

Suppression of binocular vision H53.34

Visual field defects H53.4x

Color vision deficiencies H53.5x

Glare sensitivity H53.71

Heterophoria (unspecified) H55.50

Nystagmus H55.50

Saccadic eye movements (deficiency) H55.81

Other irregular eye movements H55.89

Neurologic neglect syndrome (incl. visuospatial neglect) R41.4

Visuospatial deficit R41.842

Visual agnosia (incl. topograph-agnosia) R48.3

Abnormal oculomotor study R94.113

Injury of optic nerve and pathways S04.0xxx

Injury of oculomotor nerve S04.1xxx

Injury of trochlear nerve S04.2xxx

Injury of abducens nerve S04.4xxx
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